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ON THE THEORY OF NORMAL VARIATIONS

BANG-YEN CHEN & KENTARO YANO

1. Introduction

Let M"™ be an n-dimensional submanifold of a Riemannian manifold M™.
An infinitesimal deformation of M™ in M™ along a normal vector field £ is
called a normal variation. In this paper we shall study some fundamental
properties of nomal variations.

In § 3 we shall prove that the submanifold M™" is totally geodesic (respec-
tively, totally umbilical or minimal) if and only if every normal variation of
M™ is isometric (respectively, conformal or volume-preserving). In § 4 we
shall prove that the normal variation given by & is affine if and only if the
second fundamental tensor with respect to £ is parallel. In § 5 we shall show
that the normal variation given by & carries a totally geodesic (respectively,
totally umbilical or minimal) submanifold into a totally geodesic (respectively,
totally umbilical or minimal) submanifold when and only when £ satisfies
certain second order differential equations. In the last section, we shall study
H-variations and H-stable submanifolds, and obtain a characterization of H-
stable submanifolds with some applications; for example, we prove that an H-
stable submanifold of a positively curved manifold has parallel mean curvature
vector if and only if the submanifold is minimal.

2. Preliminaries, [1]

Let M™ be an m-dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {U; x"}, and denote by g;;, I'};, V', K" Ky;
and K the metric tensor, the Christoffe] symbols formed with g;, the operator
of covariant differentiation with respect to /™%, the curvature tensor, the Ricci
tensor and the scalar curvature of M™ respectively, where and in the sequel,
the indices 4, i, j, k, - - - run over the range {1, 2, - - -, m}.

Let M™ be an n-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {¥; y*}, and denote by g5, 1'%, V., Kyp® K. and
K’ the corresponding quantities of M™, where and in the sequel the indices
a, b, c,d, -+ run over the range {1, 2, - - -, n}.

Suppose that M* is isometrically immersed in M ™ by the immersion i: M™ —
M™, and identify i(M™) with M™. Represent the immersion by
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(1) x* = XMy,
and put
(2) B)” = G,x",

where 8, = 9/0y°. Then we have
(3) g = Blg s,

where BZ = B,’B,’. We denote m — n mutually orthogonal unit normals to
M® by C,*, where and in the sequel the indices x, y, z run over the range
{n + 1, . .-, m}. Then the metric tensor of the normal bundle of M™* is given by

(4) 8 = CIC, 8 .

The equations of Gauss and those of Weingarten are respectively
(5) V. By = h,*C,",
(6) V.Cy* = —h"Ba" ,

where V,B," and V,C,"* denote the van der Waerden-Bortolotti covariant de-
rivatives of B," and C,"* respectively along the submanifold M7, that is,

(7) V.B,* = 3.By" + I''\Bly — ', B,
(8) V,.C,t =3,C," + ' :BIC, — I'%,C",

Iz, being the components of the connection induced in the normal bundle. We
note that /%, are skew-symmetric in x and y.

The mean curvature vector H"* is given by H* = (1/n)g**V B,*. If C* is a
unit normal vector parallel to H”, then H* = aC" for some function a. « is
called the mean curvature of M™. If « vanishes identically, M™ is said to be
minimal, If « is nowhere zero, and the second fundamental tensor in the di-
rection of H? is proportional to the metric tensor, then M™ is said to be pseudo-

umbilical.
A normal vector field C* = £*C " is said to be parallel if V &% = 0 identi-
cally, and to be concurrent if there exists a function y such that V.C* = yB,*, [6].

3. Isometric, conformal and volume-preserving normal variations

We consider a normal variation of M™ in M™ given by
(9) = X0 + £0

where
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(10) Eh = Exc:ch s
and ¢ is an infinitesimal. From (9) we have
(1 B, = By + (9,6™e ,

Where Ebh == abxh.
If we displace the vectors B,* parallelly from the point (x*) to (¥*), we obtain

(12) B,)» = B,» — I'4¢'B,% .

Thus putting

(13) 8B," = B,* — B,",
we find

14 0B, = V&t ,
where

15 V" = 8,6" + I',B,7¢" .

From (6), (10) and (15), it follows that

(16) V" = —h®,6°B," + (F,E9)C ",
where
17 Vy&* = 0,6 + I';,67 .

Now a computation of the metric tensor g, = B,/B,’g (%) of the deformed
submanifold gives

Zov = 8 — 2hppxE% ..
Thus putting 6g., = F.5 — Zcs We have
(18) 08cs = —2hepafTe s
from which we can easily obtain
(19) L Bgte = 2P %,

where h%, — gbg??h,,.. A normal variation (9) is said to be isometric (re-
spectively, conformal) if 8g,, = 0 (respectively, dg., = ag,, for some function
«). From (18) we thus reach

Proposition 1. A4 normal variation (9) is isometric if and only if h.5* = 0,
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that is, if and only if the submanifold is geodesic with respect to the direction
of the normal variation.

Proposition 2. A4 normal variation (9) is conformal if and only if h,,,£° =
ag.s « being a certain function, that is, if and only if the submanifold is umbi-
lical with respect to the direction of the normal variation.

If we denote the determinant |g.,| by g, then the volume element of the sub-
manifold M™ is given by

(20 AV =wg d* NdPEN --- dy*.

Since we see from (18) that

Vg = —v g h'E%,
we have
1) 8dV = —h, £%dVe .
Hence

Proposition 3. A normal variation (9) is volume-preserving if and only if
ht &% = 0, that is, if and only if the submanifold is minimal with respevt to the
direction of the normal variation.

From Propositions 1, 2 and 3 we obtain the following theorems.

Theorem 1. A submanifold is totally geodesic if and only if every normal va-
riation of the submanifold is isometric. '

Theorem 2. A submanifold is totally umbilical if and only if every normal
variation of the submanifold is conformal.

Theorem 3. A submanifold is minimal if and only if every normal variation
of the submanifold is volume-preserving.

4. Affine normal variations

We introduce the notation
(22) B, = g®B,g,;, C*, =g""C,lg;s .
Then the relation between "% and I'% can:be written as
(23) I'ty = @.By" + I'yBi5)B*y ,
and that between 7%, and ['%; as
24 Iy, = @.C," + I'iBCHC?, .

We denote by C,”* , and C~=; the values at the point (x*) of C,* B¢,

=1 Be
Y s z
and C?%;, and by C,* B*; and C%, the components of the vectors obtained
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from C,*, B%, and C*; by replacing them parallelly from the point (x*) to (¥"),
respectively. We then have

Cjr=C» — THeC e,
(25) Bai = B% + F?@SjBahE >
nyi =C% + F;‘Lisjcxhe .

Put

(26) éCpr=Cr—C,, 6B% = Be, — B, 6C, =C* — C,.
By assuming that §C,* is given by
@7 8C," = p,"e = (7,"Bo" + 1,°Cs")e
applying the operator § to B,C,g;; = 0, and using §g;; = 0, we obtain
(Vy&NCy'g 5s + B, Ba’ + 9,°CoY)g ;0= 0.

From the above equation it follows that I',&, + 7,, = 0, where §, = £°¢,, and
Nus = 7,°8ev» and therefore that

(28) 7 = =V, ,

where V¢ = g*l,.
Applying é to B,"B%, = §% and C,*B%, = 0 gives respectively

(Vbsh)Bahe + Bbh(aBah) - 0 ] vyae + Cyh(aBah) = 0 »

from which we have, taking account of (16) and (28),
(29) 5Ba2_ = [hcaxstci + (VGSI)CIZ]E .

Applying § to B,*C*, = 0 and C,*C®, = §*, gives respectively

6" C% e + B,*3C*) =0, 77yzczhcxh —+ Cyh(5czh) =0,

from which we have, taking account of (16),

Thus by (12), (13), (14), (25), (26), (27), (29) and (30) we obtain
bh Bbh - F?isijie + (Vbé“")s )
S =Cl = F?’zfjcyis + 7,0,
B® + I'1,§'B%e + [1,°:6"B; + (P°£,)C e .
Tp= C% + I't&C%e — [(V§7)B% + 9,°C¥ e .

A
o

o b
“Q
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Put
€)Y I3, = @0:8," + I'y(X)BB,")B,
(32) 5F(c1'b:F(cLb—F?b-

Then a straightforward computation yields

(33) 0Ig = [P Vo™ + Kiyi"6*BE)BY, + ;™6 )e

from which together with £&* = £*C* and equation of Codazzi it follows that
(34) 0I'% = —[V o(hpeef®) + VolhoeaE™) — Velhons£7)]g %

Since we can easily see from (34) that 67'% = 0 and F (h..£*) = O are
equivalent, we have
Theorem 4. The normal variation (9) is affine if and only if hyy &% is parallel,

5. Normal variations which carry umbilical submanifolds to
umbilical submanifolds

By putting
(35) Iy = @.C," + I'®BCHC, ,
(36) ér¢, =rz, —1%,,
we obtain
37 oI, = [(Pp,” + Kisi"6¥BJCNC%, + A%V o7 .

Suppose that v* is a vector field of M™ defined intrinsically along the sub-
manifold M*. When we displace the submanifold by %" = x* 4 &% in the
direction &* normal to it, we obtain a vector field ¥* which is defined also
intrinsically along the deformed submanifold. If we displace " parallelly from
the point (x") to (¥*), we obtain #* = v* — I"%&/v% and hence forming
Jv* = T* — ©*, so that

i

(38) ot = vt — vt 4 e

Similarly, we have
ot = V0% — Pout 4 Ihgil v,
that is,
W oh =V o% — Vot + (0, L% + Tl)E8B Ivie

(39) g A
+ (F_’ibiacsjlvz + F_’]Li _7'80’1)%)e -
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On the other hand, from (38) it follows that

“0) V.ot = Vaor — Vc‘v". + (ajl“,’c?. +.F;~”5F,ii)§chj’l)ie
+ (I50.87v¢ + I'"E98,0%e .

Thus by (39) and (40) we find

“4n V0" — V00" = K, ;"6 B v .

Similarly, for a covector w; we have
(42) Vew, — Vedw, = — K ;"% B Iw,e .

For a tensor field carrying three kinds of indices, say, 7,", we have
(43)  OV.T,," — VdTy," = Kuyi"€* BTy — (6% To,* — GIE)Tha .
Applying (43) to B," gives

SV Byt — V3By" = Ky, "6*BIBy'e — B,*6I'%,
3(hey®C,") = Wy + Kiyi"6*BIByDe — B, oI'G, ,
from which follows
(44) Shes® = [hesn® + T8 + Kiyi"€*BIB,HCH e .

Substituting §* = £7C " in (44) we find

(45)  Ohet® = [heo®p.® — hee %8¢ + V Vo8 + Ky CEB, B C8Ye .

Thus we obtain the following theorems.
Theorem 5. The normal variation given by £2C " carries a totally geodesic
submanifold into a totally geodesic submanifold if and only if

(46) Vchsm -+ Kk]zhckacJBblczhsy =0.

Theorem 6. The normal variation given by §°C " carries a totally umbilical
submanifold into a totally umbilical submanifold if and only if

(47) Vchsz + KkjihckachbiCIhsy = gcbaz B

a® being certain functions.
Theorem 7. The normal variation given by &C,* carries a minimal sub-
manifold into a minimal submanifold if and only if

(48) 8T E" + Ky CPBICo £V — hth2 87 =0,

where B7* = g®®BIi. In particular, the normal variation given by §C " carries
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a totally geodesic submanifold into a minimal submanifold if and only if g°°V .V ,&*
+ Ky;"C*BICo Y = 0.

6. H-variations

The mean curvature vector of M™ in M™ is given by

H" — lgcchan .
n

For the normal variation (9), if the normal vector field £&°C,* is parallel to
the mean curvature vector along M™", then the normal variation (9) is called
an H-variation. In this section, we shall choose the first unit normal vector
C,.." in the direction of the mean curvature vector. Thus

(49) %‘ngVcBbh = C((j'n+1h P

where « is the mean curvature of M™. From (5) it follows that
(50) gt =0, (x=n+2--,m).

We consider an H-variation and hence

e =g, = .. =gm=0,

¢ being the length of the variation vector.
Substituting (51) in (45) gives

(52) 5hcbn+1 = [hcbzvzn+l - ¢hcen+lhben+1 + ¢[,cn+1y[,b!/n+1
+ VchSZS + KkjihCnHkBZlfC'th]e s
from which, transvecting with g¢? and using (15) and (19), we find
(53) ndo = Ag — GI + $haoh® + $KyynCBIHCH
where « is the mean curvature, and
P = ng(Fcn+1yan+ly) 5 hcb = hcbn+l s Cr = Cn+1h s Bt = szfg” .
For the normal variation of the integral f a’aV, ¢ being any nonegative
M
number, we have

5J a’dV = J ca® YadV + J atodV
o I b3

and therefore, in consequence of (21) and (53),
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Bj atdV
M
= f [—a”‘l(dsﬁ — " + Ghoph® + ¢Ky i, CEBICH) — na”“ng]dV.
M Ln

We assume that the normal variation leaves the boundary 8 M of M strongly
fixed in the sense that both ¢ and its gradient vanish on 9M. Then

j (= 4g)dV = j $(datDdV
M M
which together with (54) implies that

5J‘ Otch :j £¢[Aac—1 _— ac—llz . n_2a0+1
M M n c

+ ac_lhcbhdj + ac—lKkjithBjiCh]dV .

From this we see that 5j a®dV = 0 for all H-variations which leave the bound-
M
ary strongly fixed if and only if

2
dott = ac“(lz + Bor et — KkjihC"B”Ch> .
c .

We say that a submanifold is H-stable if 5f a™dV = 0 for all H-variations
V3

which leave the boundary strongly fixed. From the above equation, we have
Theorem 8. Let M™ be an n-dimensional submanifold of an m-dimensional
Riemannian manifold M™. Then M" is H-stable if and only if

(55) Aot = o™ (® + no? — hoph®® — Ky, CFBICF) .

We now assume that M™ is H-stable and has parallel mean curvature vector.
Then F*(aC,,.,*) = 0, and therefore « is constant. If & = 0, then /> = 0. Sub-
stituting this in (55) gives

(6) L 5 = 2 + KeyunC*BHC = 0,
n s<e
where A, 4, - - -, 4, are eigenvalues of A%, .
Thus assuming that K,;;,C*B7*C* > 0, we have 4, = 4, = --- = 2, that

is, M™ is pseudo-umbilical, and K ;;,C*B*C* = 0, from which we find

(59) PCh = — LB,
n
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that is, the mean curvature vector is concurrent along M". Conversely, if the
mean curvature vector is concurrent, then it is parallel, A" is pseudo-umbi-
lical, and « is constant. Thus M™ is H-stable if and only if K;;;,C*B/*C"* = 0.
Consequently, we have the following propositions.

Proposition 4. Let M™ be an H-stable submanifold of M™ with K ;,,C*B/*C"
> 0. Then M™ has parallel mean curvature vector if and only if either M™ is
minimal or K ;;, C*B7*C* = 0 and the mean curvature vector is concurrent.

Proposition 5. Let M™ be a submanifold of M™ with concurrent mean cur-
vature vector. Then M™ is H-stable if and only if K ;;,C*B7*C* = 0.

Assume that K, ;;,C*B/*C"* < 0 and M" is pseudo-umbilical. If M is com-
pact and H-stable, then da"~! does not change its sign. Hence, from Hopf’s
lemma, da™"' = 0, I* = 0, and K, ;;,C B/*C* = 0, so that the mean curvature
vector is parallel and therefore concurrent. Consequently, we have

Propesition 6. Let M™ be a compact H-stable submanifold of M™ with
K3 inCEBH#CR < 0. If M™ is pseudo-umbilical, then the mean curvature vector
is concurrent and K, ;;,C*B#*C* = Q.

In particular, Propositions 4 and 6 give immediately the following.

Theorem 9. Ler M™ be an H-stable submanifold of a positively curved mani-
fold M™. Then M™ has parallel mean curvature vector if and only if M'™ is minimal.

Theorem 10. Let M™ be a compact pseudo-umbilical submanifold of a nega-
tively curved manifold M™. Then M™ is not H-stable.

Theorem 11 (Chern and Houh [3]). Let M™ be an H-stable submanifold of a
euclidean space E™. Then M™ has parallel mean curvature vector if and only if
either M™ is minimal in E™ or M™ is a minimal submanifold of a hypersphere
of E™,
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